(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
The (relative) TRS S consists of the following rules:
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
The (relative) TRS S consists of the following rules:
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x
Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
lt0,
g,
fThey will be analysed ascendingly in the following order:
lt0 < g
lt0 < f
(6) Obligation:
Innermost TRS:
Rules:
lt0(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lt0(
xs',
xs)
g(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
f(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
lt0(
x,
Nil) →
Falseg(
x,
Cons(
x',
xs)) →
g[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs))
f(
x,
Cons(
x',
xs)) →
f(
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)),
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)))
number42 →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x,
y) →
Cons(
f(
x,
y),
Cons(
g(
x,
y),
Nil))
g[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
g(
xs,
Cons(
Cons(
Nil,
Nil),
y))
g[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
g(
x',
xs)
f[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
xsf[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
xsf[Ite][False][Ite](
False,
x,
y) →
Cons(
Cons(
Nil,
Nil),
y)
f[Ite][False][Ite](
True,
x,
y) →
xTypes:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))
The following defined symbols remain to be analysed:
lt0, g, f
They will be analysed ascendingly in the following order:
lt0 < g
lt0 < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt0(
gen_Cons:Nil3_1(
n5_1),
gen_Cons:Nil3_1(
n5_1)) →
False, rt ∈ Ω(1 + n5
1)
Induction Base:
lt0(gen_Cons:Nil3_1(0), gen_Cons:Nil3_1(0)) →RΩ(1)
False
Induction Step:
lt0(gen_Cons:Nil3_1(+(n5_1, 1)), gen_Cons:Nil3_1(+(n5_1, 1))) →RΩ(1)
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
lt0(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lt0(
xs',
xs)
g(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
f(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
lt0(
x,
Nil) →
Falseg(
x,
Cons(
x',
xs)) →
g[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs))
f(
x,
Cons(
x',
xs)) →
f(
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)),
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)))
number42 →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x,
y) →
Cons(
f(
x,
y),
Cons(
g(
x,
y),
Nil))
g[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
g(
xs,
Cons(
Cons(
Nil,
Nil),
y))
g[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
g(
x',
xs)
f[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
xsf[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
xsf[Ite][False][Ite](
False,
x,
y) →
Cons(
Cons(
Nil,
Nil),
y)
f[Ite][False][Ite](
True,
x,
y) →
xTypes:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))
The following defined symbols remain to be analysed:
g, f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(11) Obligation:
Innermost TRS:
Rules:
lt0(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lt0(
xs',
xs)
g(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
f(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
lt0(
x,
Nil) →
Falseg(
x,
Cons(
x',
xs)) →
g[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs))
f(
x,
Cons(
x',
xs)) →
f(
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)),
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)))
number42 →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x,
y) →
Cons(
f(
x,
y),
Cons(
g(
x,
y),
Nil))
g[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
g(
xs,
Cons(
Cons(
Nil,
Nil),
y))
g[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
g(
x',
xs)
f[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
xsf[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
xsf[Ite][False][Ite](
False,
x,
y) →
Cons(
Cons(
Nil,
Nil),
y)
f[Ite][False][Ite](
True,
x,
y) →
xTypes:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
Innermost TRS:
Rules:
lt0(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lt0(
xs',
xs)
g(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
f(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
lt0(
x,
Nil) →
Falseg(
x,
Cons(
x',
xs)) →
g[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs))
f(
x,
Cons(
x',
xs)) →
f(
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)),
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)))
number42 →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x,
y) →
Cons(
f(
x,
y),
Cons(
g(
x,
y),
Nil))
g[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
g(
xs,
Cons(
Cons(
Nil,
Nil),
y))
g[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
g(
x',
xs)
f[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
xsf[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
xsf[Ite][False][Ite](
False,
x,
y) →
Cons(
Cons(
Nil,
Nil),
y)
f[Ite][False][Ite](
True,
x,
y) →
xTypes:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
lt0(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lt0(
xs',
xs)
g(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
f(
x,
Nil) →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
lt0(
x,
Nil) →
Falseg(
x,
Cons(
x',
xs)) →
g[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs))
f(
x,
Cons(
x',
xs)) →
f(
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)),
f[Ite][False][Ite](
lt0(
x,
Cons(
Nil,
Nil)),
x,
Cons(
x',
xs)))
number42 →
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Cons(
Nil,
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x,
y) →
Cons(
f(
x,
y),
Cons(
g(
x,
y),
Nil))
g[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
g(
xs,
Cons(
Cons(
Nil,
Nil),
y))
g[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
g(
x',
xs)
f[Ite][False][Ite](
False,
Cons(
x,
xs),
y) →
xsf[Ite][False][Ite](
True,
x',
Cons(
x,
xs)) →
xsf[Ite][False][Ite](
False,
x,
y) →
Cons(
Cons(
Nil,
Nil),
y)
f[Ite][False][Ite](
True,
x,
y) →
xTypes:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)
(18) BOUNDS(n^1, INF)